
The COM Specification Chapter 3. Objects and Interfaces

1Objects And Interfaces
This chapter describes in detail the heart of COM: the notion of interfaces and their relationships to the
objects on which they are implemented. More specifically, this chapter covers what an interface is
(technically), interface calling conventions, object and interface identity, the fundamental interface called
IUnknown, and COM’s error reporting mechanism. In addition, this chapter describes how an object
implements one or more interfaces as well as a special type of object called the “enumerator” which
comes up in various contexts in COM.
As described in Chapters 1 and 2, the COM Library provides the fundamental implementation locator
services to clients and provides all the necessary glue to help clients communicate transparently with
object regardless of where those objects execute: in-process, out-of-process, or on a different machine
entirely. All servers expose their object’s services through interfaces, and COM provides
implementations of the “proxy” and “stub” objects that make communication possible between processes
and machines where RPC is necessary.
However, as we’ll see in this chapter and those that follow, the COM Library also provides fundamental
API functions for both clients and servers or, in general, any piece of code that uses COM, application or
not. These API functions will be described in the context of where other applications or DLLs use them.
A COM implementor reading this document will find the specifications for each function offset clearly
from the rest of the text. These functions are implemented in the COM Library to standardize the parts of
this specification that applications should not have to implement nor would want to implement. Through
the services of the COM Library, all clients can make use of all objects in all servers, and all servers can
expose their objects to all clients. Only by having a standard is this possible, and the COM Library
enforces that standard by doing most of the hard work.
Not all the COM Library functions are truly fundamental. Some are just convenient wrappers to common
sequences of other calls, sometimes called “helper functions.” Others exist simply to maintain global lists
for the sake of all applications. Others just provide a solid implementation of functions that could be
implemented in every application, but would be tedious and wasteful to do so.

1.1Interfaces
An interface, in the COM definition, is a contract between the user, or client, of some object and the
object itself. It is a promise on the part of the object to provide a certain level of service, of functionality,
to that client. Chapters 1 and 2 have already explained why interfaces are important COM and the whole
idea of an object model. This chapter will now fill out the definition of an interface on the technical side.

1.1.1The Interface Binary Standard
Technically speaking, an interface is some data structure that sits between the client’s code and the
object’s implementation through which the client requests the object’s services. The interface in this
sense is nothing more than a set of member functions that the client can call to access that object
implementation. Those member functions are exposed outside the object implementor application such
that clients, local or remote, can call those functions.
The client maintains a pointer to the interface which is, in actuality, a pointer to a pointer to an array of
pointers to the object’s implementations of the interface member functions. That’s a lot of pointers; to
clarify matters, the structure is illustrated in Figure 3-1.

DRAFT Page: 1 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 3. Objects and Interfaces The COM Specification

pointer

Interface Function Table

Interface Pointer Pointer to Function1

Object Implementation
of interface functions

Pointer to Function2

Pointer to Function3

...

Figure 3-1: The interface structure: a client has a pointer to an interface which is
a pointer to a pointer to an array (table) of pointers to the object’s implementation.

By convention the pointer to the interface function table is called the pVtbl pointer. The table itself is
generally referred to with the name vtbl for “virtual function table.”
On a given implementation platform, a given method in a given interface (a particular IID, that is) has a
fixed calling convention; this is decoupled from the implementation of the interface. In principle, this
decision can be made on a method by method basis, though in practice on a given platform virtually all
methods in all interfaces use the same calling convention. On Microsoft’s 16-bit Windows platform, this
default is the __far __cdecl calling convention; on Win32 platforms, the __stdcall calling convention is the
default for methods which do not take a variable number of arguments, and __cdecl is used for those that
do.
In contrast, just for note, COM API functions (not interface members) use the standard host system-call
calling convention, which on both Microsoft Win16 and Win32 is the __far __pascal sequence.
Finally, and quite significantly, all strings passed through all COM interfaces (and, at least on Microsoft
platforms, all COM APIs) are Unicode strings. There simply is no other reasonable way to get
interoperable objects in the face of (i) location transparency, and (ii) a high-efficiency object architecture
that doesn’t in all cases intervene system-provided code between client and server. Further, this burden is
in practice not large.
When calling member functions, the caller must include an argument which is the pointer to the object
instance itself. This is automatically provided in C++ compilers and completely hidden from the caller.
The Microsoft Object Mapping1 specifies that this pointer is pushed very last, immediately before the
return address. The location of this pointer is the reason that the pIInterface pointer appears at the
beginning of the argument list of the equivalent C function prototype: it means that the layout in the stack
of the parameters to the C function prototype is exactly that expected by the member function
implemented in C++, and so no re-ordering is required.
Usually the pointer to the interface itself is the pointer to the entire object structure (state variables, or
whatever) and that structure immediately follows2 the pVtbl pointer memory as shown in Figure 3-2.

lpVtbl

Interface Function Table

Interface Pointer Pointer to Function1

Object Implementation
of interface functions

Pointer to Function2

Pointer to Function3

...

Object
State
Data

Figure 3-2: Convention places object data following the pointer
to the interface function table.

Since the pVtbl is received as the this pointer in the interface function, the implementor of that function
knows which object is being called—an object is, after all, some structure and functions to manipulate
that structure, and the interface definition here supplies both.
In any case, this “vtbl” structure is called a binary standard because on the binary level, the structure is
completely determined by the particular interface being used and the platform on which it is being
invoked. It is independent of the programming language or tool used to create it. In other words, a
program can be written in C to generate this structure to match what C++ does automatically. For more

1 The “Microsoft Object Mapping” is an open specification describing the detailed layout of C++ objects. It is supported by the MS
C/C++ compiler, as well as C++ compilers from other vendors including Borland, Symantec, Watcom, , and others. This is also the
location of the this pointer as placed by CFront when using the traditional right-to-left __cdecl calling sequence. Thus, we achieve
a large degree of interoperability.

2 Usually this data follows the pVtbl pointer, but this is not required. It is perfectly legal for object-specific data to precede
the vtbl pointer, and this in fact will be common with many C++ compilers.

Copyright © 1995 Microsoft Corporation Page: 2 DRAFT
All Rights Reserved

The COM Specification Chapter 3. Objects and Interfaces

details, see the section “C vs. C++” below. You could even create this structure in assembly if so
inclined. Since compilers for other languages eventually reduce source code to assembly (as is the
compiler itself) it is really a matter for compiler vendors to support this structure for languages such as
Pascal, COBOL, Smalltalk, etc. Thus COM clients, objects, and servers can be written in any languages
with appropriate compiler support.
Note that it is technically legal for the binary calling conventions for a given interface to vary according
the particular implementation platform in question, though this flexibility should be exercised by COM
system implementors only with very careful attention to source portability issues. It is the case, for
example, that on the Macintosh, the pVtbl pointer does not point to the first function in the vtbl, but rather
to a dummy pointer slot (which is ignored) immediately before the first function; all the function pointers
are thus offset by an index of one in the vtbl.
An interface implementor is free to use the memory before and beyond the “as-specified-by-the-standard”
vtbl for whatever purpose he may wish; others cannot assume anything about such memory.

1.1.2Interface Definition and Identity
Every interface has a name that serves as the programmatic compile-time type in code that uses that
interface (either as a client or as an object implementor). The convention is to name each interface with a
capital “I” followed by some descriptive label that indicates what functionality the interface
encompasses. For example, IUnknown is the label of the interface that represents the functionality of an
object when all else about that object is unknown.
These programmatic types are defined in header files provided by the designer of the interface through
use of the Interface Description Language (IDL, see next section). For C++, an interface is defined as an
abstract base, that is, a structure containing nothing but “pure virtual” member functions. This
specification uses C++ notation to express the declaration of an interface. For example, the IUnknown
interface is declared as:

interface IUnknown
{
virtual HRESULT QueryInterface(IID& iid, void** ppv) =0;
virtual ULONG AddRef(void) =0;
virtual ULONG Release(void) =0;
};

where “virtual” and “=0” describe the attribute of a “pure virtual” function and where the interface keyword
is defined as:

#define interface struct

The programmatic name and definition of an interface defines a type such that an application can declare
a pointer to an interface using standard C++ syntax as in IUnknown *.

In addition, this specification as a notation makes some use of the C++ reference mechanism in
parameter passing, for example:

QueryInterface(const IID& iid, void**ppv);

Usually “const <type>&” is written as “REF<type>” as in REFIID for convenience. As you might expect,
this example would appear in a C version of the interface as a parameter of type:

const IID * const

Input parameters passed by reference will themselves be const, as shown here. In-out or out- parameters
will not.
The use of the interface keyword is more a documentation technique than any requirement for
implementation. An interface, as a binary standard, is definable in any programming language as shown
in the previous section. This specification’s use of C++ syntax is just a convenience. 3 Also, for ease of
reading, this specification generally omits parameter types in code fragments such as this but does
document those parameters and types fully with each member function. Types do, of course, appear in
header files with interfaces.
It is very important to note that the programmatic name for an interface is only a compile-time type used
in application source code. Each interface must also have a run-time identifier. This identifier enables a
3 And, indeed, this syntax will at times be somewhat abused.

DRAFT Page: 3 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 3. Objects and Interfaces The COM Specification

caller to query (via QueryInterface) an object for a desired interface. Interface identifiers are GUIDs, that is,
globally-unique 16 byte values, of type IID. The person who defines the interface allocates and assigns the
IID as with any other GUID, and he informs others of his choice at the same time he informs them of the
interface member functions, semantics, etc. Use of a GUID for this purpose guarantees that the IID will be
unique in all programs, on all machines, for all time, the run-time identifier for a given interface will in
fact have the same 16 byte value.
Programmers who define interfaces convey the interface identifier to implementors or clients of that
interface along with the other information about the interface (in the form of header files, accompanying
semantic documentation, etc.). To make application source code independent of the representation of
particular interface identifiers, it is standard practice that the header file defines a constant for each IID
where the symbol is the name of the interface prefixed with “IID_” such that the name can be derived
algorithmically. For example, the interface IUnknown has an identifier called IID_IUnknown.
For brevity in this specification, this definition will not be repeated with each interface, though of course
it is present in the COM implementation.

1.1.3Defining Interfaces: IDL
The Interface Description Language (IDL) is based on the Open Software Foundation (OSF) Distributed
Computing Environment (DCE) specification for describing interfaces, operations, and attributes to
define remote procedure calls. COM extends the IDL to support distributed objects.
A designer can define a new custom interface by writing an interface definition file. The interface
definition file uses the IDL to describe data types and member functions of an interface. The interface
definition file contains the information that defines the actual contract between the client application and
server object. The interface contract specifies three things:
· Language binding—defines the programming model exposed to the application program using a

particular programming language.
· Application binary interface—specifies how consumers and providers of the interface interoperate on

a particular target platform.
· Network interface—defines how client applications access remote server objects via the network.
After completing the interface definition file, the programmer runs the IDL compiler to generate the
interface header and the source code necessary to build the interface proxy and interface stub that the
interface definition file describes. The interface header file is made available so client applications can
use the interface. The interface proxy and interface stub are used to construct the proxy and stub DLLs.
The DLL containing the interface proxy must be distributed with all client applications that use the new
interface. The DLL containing the interface stub must be distributed with all server objects that provide
the new interface.
It is important to note that the IDL is a tool that makes the job of defining interfaces easier for the
programmer, and is one of possibly many such tools. It is not the key to COM interoperability. COM
compliance does not require that the IDL compiler be used. However, as IDL is broadly understood and
used, it provides a convenient means by which interface specifications can be conveyed to other
programmers.

1.1.4C vs. C++ vs. ...
This specification documents COM interfaces using C++ syntax as a notation but (again) does not mean
COM requires that programmers use C++, or any other particular language. COM is based on a binary
interoperability standard, rather than a language interoperability standard. Any language supporting
“structure” or “record” types containing double-indirected access to a table of function pointers is
suitable.
However, this is not to say all languages are created equal. It is certainly true that since the binary vtbl
standard is exactly what most C++ compilers generate on PC and many RISC platforms, C++ is a
convenient language to use over a language such as C.

Copyright © 1995 Microsoft Corporation Page: 4 DRAFT
All Rights Reserved

The COM Specification Chapter 3. Objects and Interfaces

That being said, COM can declare interface declarations for both C++ and C (and for other languages if
the COM implementor desires). The C++ definition of an interface, which in general is of the form:

interface ISomeInterface
{
virtual RET_T MemberFunction(ARG1_T arg1, ARG2_T arg2 /*, etc */);
[Other member functions]
...
};

then the corresponding C declaration of that interface looks like
typedef struct ISomeInterface

{
ISomeInterfaceVtbl * pVtbl;
} ISomeInterface;

typedef struct ISomeInterfaceVtbl ISomeInterfaceVtbl;

struct ISomeInterfaceVtbl
{
RET_T (*MemberFunction)(ISomeInterface * this, ARG1_T arg1,

ARG2_T arg2 /*, etc */);
[Other member functions]
} ;

This example also illustrates the algorithm for determining the signature of C form of an interface
function given the corresponding C++ form of the interface function:
· Use the same argument list as that of the member function, but add an initial parameter which is the

pointer to the interface. This initial parameter is a pointer to a C type of the same name as the
interface.

· Define a structure type which is a table of function pointers corresponding to the vtbl layout of the
interface. The name of this structure type should be the name of the interface followed by
“Vtbl.” Members in this structure have the same names as the member functions of the interface.

The C form of interfaces, when instantiated, generates exactly the same binary structure as a C++
interface does when some C++ class inherits the function signatures (but no implementation) from an
interface and overrides each virtual function.
These structures show why C++ is more convenient for the object implementor because C++ will
automatically generate the vtbl and the object structure pointing to it in the course of instantiating an
object. A C object implementor must define and object structure with the pVtbl field first, explicitly
allocate both object structure and interface Vtbl structure, explicitly fill in the fields of the Vtbl structure,
and explicitly point the pVtbl field in the object structure to the Vtbl structure. Filling the Vtbl structure need
only occur once in an application which then simplifies later object allocations. In any case, once the C
program has done this explicit work the binary structure is indistinguishable from what C++ would
generate.
On the client side of the picture there is also a small difference between using C and C++. Suppose the
client application has a pointer to an ISomeInterface on some object in the variable psome. If the client is
compiled using C++, then the following line of code would call a member function in the interface:

psome->MemberFunction(arg1, arg2, /* other parameters */);

A C++ compiler, upon noting that the type of psome is an ISomeInterface * will know to actually perform
the double indirection through the hidden pVtbl pointer and will remember to push the psome pointer itself
on the stack so the implementation of MemberFunction knows which object to work with. This is, in fact,
what C++ compilers do for any member function call; C++ programmers just never see it.
What C++ actually does is be expressed in C as follows:

psome->lpVtbl->MemberFunction(psome, arg1, arg2, /* other parameters */);

This is, in fact, how a client written in C would make the same call. These two lines of code show why
C++ is more convenient—there is simply less typing and therefore fewer chances to make mistakes. The
resulting source code is somewhat cleaner as well. The key point to remember, however, is that how the
client calls an interface member depends solely on the language used to implement the client and is
completely unrelated to the language used to implement the object . The code shown above to call an

DRAFT Page: 5 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 3. Objects and Interfaces The COM Specification

interface function is the code necessary to work with the interface binary standard and not the object
itself.

1.1.5Remoting Magic Through Vtbls
The double indirection of the vtbl structure has an additional, indeed enormous, benefit: the pointers in
the table of function pointers do not need to point directly to the real implementation in the real object.
This is the heart of Location Transparency.
It is true that in the in-process server case, where the object is loaded directly into the client process, the
function pointers in the table are, in fact, the actual pointers to the actual implementation. So a function
call from the client to an interface member directly transfers execution control to the interface member
function.
However, this cannot possibly work for local, let alone remote, object, because pointers to memory are
absolutely not sharable between processes. What must still happen to achieve transparency is that the
client continues to call interface member functions as if it were calling the actual implementation . In
other words, the client uniformly transfers control to some object’s member function by making the call.

In-Process
Object

Client
Application

Local
Object
Proxy

Remote
Object
Proxy

In-Process Server

COM

Client Process

RPC

RPC

Local
Object

Local Server

Stub

COM

Local Server Process

Remote
Object

Remote Server

Stub

COM

Remote Server Process

Remote Machine

Figure 3-3: A client always calls interface members in some in-process object. If
the actual object is local or remote, the call is made to a proxy object which then

makes a remote procedure call to the actual object.
So what member function actually executes? The answer is that the interface member called is
implemented by a proxy object that is always an in-process object that acts on behalf of the object being
called. This proxy object knows that the actual object is running in a local or remote server and so it must
somehow make a remote procedure call, through a standard RPC mechanism, to that object as shown in
Figure 3-3.
The proxy object packages up the function parameters in some data packets and generates an RPC call to
the local or remote object. That packet is picked up by a stub object in the server’s process, on the local
or a remote machine, which unpacks the parameters and makes the call to the real implementation of the
member function. When that function returns, the stub packages up any out-parameters and the return
value, sends it back to the proxy, which unpacks them and returns them to the original client. For exact
details on how the proxy-stub and RPC mechanisms work, see Chapter 7.
The bottom line is that client and server always talk to each other as if everything was in-process. All
calls from the client and all calls to the server do at some point, in fact, happen in-process. But because

Copyright © 1995 Microsoft Corporation Page: 6 DRAFT
All Rights Reserved

The COM Specification Chapter 3. Objects and Interfaces

the vtbl structure allows some agent, like COM, to intercept all function calls and all returns from
functions, that agent can redirect those calls to an RPC call as necessary. All of this is completely
transparent to the client and server, hence Location Transparency. 4

1.2Globally Unique Identifiers
As mentioned earlier in this document, the GUID, from which are also obtained CLSID, IIDs, and any
other needed unique identifier, is a 128-bit, or 16-byte, value. The term GUID as used in this specification
is completely synonymous and interchangeable with the term “UUID” as used by the DCE RPC
architecture; they are indeed one and the same notion. In binary terms, a GUID is a data structure defined
as follows, where DWORD is 32-bits, WORD is 16-bits, and BYTE is 8-bits:

typedef struct GUID {
DWORD Data1;
WORD Data2;
WORD Data3;
BYTE Data4[8];
} GUID;

This structure provides applications with some way of addressing the parts of a GUID for debugging
purposes, if necessary. This information is also needed when GUIDs are transmitted between machines of
different byte orders.
For the most part, applications never manipulate GUIDs directly—they are almost always manipulated
either as a constant, such as with interface identifiers, or as a variable of which the absolute value is
unimportant. For example, a client might enumerate all object classes registered on the system and
display a list of those classes to an end user. That user selects a class from the list which the client then
maps to an absolute CLSID value. The client does not care what that value is—it simply knows that it
uniquely identifies the object that the user selected.
The GUID design allows for coexistence of several different allocation technologies, but the one by far
most commonly used incorporates a 48-bit machine unique identifier together with the current UTC time
and some persistent backing store to guard against retrograde clock motion. It is in theory capable of
allocating GUIDs at a rate of 10,000,000 per second per machine for the next 3240 years, enough for
most purposes.
For further information regarding GUID allocation technologies, see pp585-592 of [CAE RPC].5

1.3The IUnknown Interface
This specification has already mentioned the IUnknown interface many times. It is the fundamental
interface in COM that contains basic operations of not only all objects, but all interfaces as well:
reference counting and QueryInterface. All interfaces in COM are polymorphic with IUnknown, that is, if you
look at the first three functions in any interface you see QueryInterface, AddRef, and Release. In other words,
IUnknown is base interface from which all other interfaces inherit.
Any single object usually only requires a single implementation of the IUnknown member functions. This
means that by virtue of implementing any interface on an object you completely implement the IUnknown
functions. You do not generally need to explicitly inherit from nor implement IUnknown as its own
interface: when queried for it, simply typecast another interface pointer into an IUnknown* which is
entirely legal with polymorphism.
In some specific situations, more notably in creating an object that supports aggregation, you may need to
implement one set of IUnknown functions for all interfaces as well as a stand-alone IUnknown interface. The
reasons and techniques for this are described in the “Object Reusability” section of Chapter 6.
In any case, any object implementor will implement IUnknown functions, and we are now in a position to
look at them in their precise terms.

4 Of course, if a client timed the call it might be able to discern a performance penalty if it had both in-process and out-of-process
objects to compare.

5 Though be aware that the use of the term GUID on page 587 is regrettably not the same as its usage in this specification. In
this specification, the term GUID is used to refer to all identifiers that are “interoperable” with UUIDs as defined on p586; p587
uses the term to refer to one specific central-authority allocation scheme. Apologies to those who may be confused by this state of
affairs.

DRAFT Page: 7 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 3. Objects and Interfaces The COM Specification

1.3.1IUnknown Interface
IUnknown supports the capability of getting to other interfaces on the same object through QueryInterface. In
addition, it supports the management of the existence of the interface instance though AddRef and Release.
The following is the definition of IUnknown using the IDL notation; for details on the syntax of IDL see
Chapter 15.6

[
 object,
 uuid(00000000-0000-0000-C000-000000000046),
 pointer_default(unique)
]
interface IUnknown
{

HRESULT QueryInterface([in] REFIID iid, [out] void **ppv) ;
ULONG AddRef(void) ;
ULONG Release(void);

}

IUnknown::QueryInterface
HRESULT IUnknown::QueryInterface(iid, ppv)
Return a pointer within this object instance that implements the indicated interface. Answer NULL if the
receiver does not contain an implementation of the interface.
It is required that any query for the specific interface IUnknown7 always returns the same actual pointer
value, no matter through which interface derived from IUnknown it is called. This enables the following
identity test algorithm to determine whether two pointers in fact point to the same object: call Query-
Interface(IID_IUnknown, ...) on both and compare the results.
In contrast, queries for interfaces other than IUnknown are not required to return the same actual pointer
value each time a QueryInterface returning one of them is called. This, among other things, enables
sophisticated object implementors to free individual interfaces on their objects when they are not being
used, recreating them on demand (reference counting is a per-interface notion, as is explained further
below). This requirement is the basis for what is called COM identity.
It is required that the set of interfaces accessible on an object via QueryInterface be static, not dynamic, in
the following precise sense.8 Suppose we have a pointer to an interface

ISomeInterface * psome = (some function returning an ISomeInterface *);

where ISomeInterface derives from IUnknown. Suppose further that the following operation is attempted:
IOtherInterface * pother;
HRESULT hr;
hr=psome->QueryInterface(IID_IOtherInterface, &pother); //line 4

Then, the following must be true:
· If hr==S_OK, then if the QueryInterface in “line 4” is attempted a second time from the same psome

pointer, then S_OK must be answered again. This is independent of whether or not pother->Release
was called in the interim. In short, if you can get to a pointer once, you can get to it again.

· If hr==E_NOINTERFACE, then if the QueryInterface in line 4 is attempted a second time from the same
psome pointer, then E_NOINTERFACE must be answered again. In short, if you didn’t get it the
first time, then you won’t get it later.

Furthermore, QueryInterface must be reflexive, symmetric, and transitive with respect to the set of
interfaces that are accessible. That is, given the above definitions, then we have the following:

Symmetric: psome->QueryInterface(IID_ISomeInterface, ...) must succeed
Reflexive: If in line 4, pother was successfully obtained, then

6 Throughout this document IDL notation is used to precisely describe interfaces and other types. The actual IDL files
contain additional IDL specifies that are used by the IDL compiler to optimize the generation of marshaling code, but have no
bearing on the actual interface contract.

7 That is, a QueryInterface invocation where iid is 00000000-0000-0000-C000-000000000046.
8 While this set of rules may seem surprising to some, they are needed in order that remote access to interface pointers can

be provided with a reasonable degree of efficiency (without this, interface pointers could not be cached on a remote machine).
Further, as QueryInterface forms the fundamental architectural basis by which clients reason about the capabilities of an object
with which they have come in contact, stability is needed to make any sort of reasonable reasoning and capability discovery
possible.

Copyright © 1995 Microsoft Corporation Page: 8 DRAFT
All Rights Reserved

The COM Specification Chapter 3. Objects and Interfaces

pother->QueryInterface(IID_ISomeInterface, ...)

must succeed.
Transitive: If in line 4, pother was successfully obtained, and we do

IYetAnother * pyet;
pother->QueryInterface(IID_IYetAnother, &pyet); //Line 7

and pyet is successfully obtained in line 7, then
pyet->QueryInterface(IID_ISomeInterface, ...)

must succeed.

Here, “must succeed” means “must succeed barring catastrophic failures.” As was mentioned above, it is
specifically not the case that two QueryInterface calls on the same pointer asking for the same interface
must succeed and return exactly the same pointer value (except in the IUnknown case as described
previously).
Argument Type Description
iid REFIID The interface identifier desired.
ppv void** Pointer to the object with the desired interface. In the case that the

interface is not supported or another error occurred, *ppv must be set to
NULL.

Return Value Meaning
S_OK Success. The interface is supported
E_NOINTERFACE The interface is not supported
E_UNEXPECTED An unknown error occurred.

IUnknown::AddRef
ULONG IUnknown::AddRef(void)
Increments the reference count in this interface instance.
Objects implementations are required to support a certain minimum size for the counter that is internally
maintained by AddRef. In short, this counter must be at least 31 bits large. The precise rule is that the
counter must be large enough to support 231-1 outstanding pointer references to all the interfaces on a
given object taken as a whole. Just make it a 32 bit unsigned integer, and you’ll be fine.
Argument Type Description
return value ULONG The resulting value of the reference count. This value is returned

solely for diagnostic/testing purposes; it absolutely holds no meaning
for release code since in certain situations it is unstable

IUnknown::Release
ULONG IUnknown::Release(void)
Release a reference to this interface instance.
If AddRef has been called on this object (through any IUnknown members of its interfaces) n times and this
is the nth call to Release, then the interface instance will free itself.
Release cannot indicate failure; if a client needs to know that resources have been freed etc., it must use a
method in some interface on the object with higher level semantics before calling release.

DRAFT Page: 9 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 3. Objects and Interfaces The COM Specification

Argument Type Description
return value ULONG The resulting value of the reference count. This value is returned

solely for diagnostic/testing purposes; it only has meaning when the
return is zero meaning that the object cannot be considered valid in
any way by the caller. Non-zero values are meaningless to the caller.

1.3.2Reference Counting
Objects accessed through interfaces use a reference counting mechanism to ensure that the lifetime of the
object includes the lifetime of references to it. This mechanism is adopted so that independent
components can obtain and release access to a single object, and not have to coordinate with each other
over the lifetime management. In a sense, the object provides this management, so long as the client
components conform to the rules. Within a single component that is completely under the control of a
single development organization, clearly that organization can adopt whatever strategy it chooses. The
following rules are about how to manage and communicate interface instances between components, and
are a reasonable starting point for a policy within a component.
Note that the reference counting paradigm applies only to pointers to interfaces; pointers to data are not
referenced counted.
It is important to be very clear on exactly when it is necessary to call AddRef and Release through an
interface pointer. By its nature, pointer management is a cooperative effort between separate pieces of
code, which must all therefore cooperate in order that the overall management of the pointer be correct.
The following discussion should hopefully clarify the rules as to when AddRef and Release need to be
called in order that this may happen. Some special reference counting rules apply to objects which are
aggregated; see the discussion of aggregation in Chapter 6.
The conceptual model is the following: interface pointers are thought of as living in pointer variables,
which for the present discussion will include variables in memory locations and in internal processor
registers, and will include both programmer- and compiler-generated variables. In short, it includes all
internal computation state that holds an interface pointer. Assignment to or initialization of a pointer
variable involves creating a new copy of an already existing pointer: where there was one copy of the
pointer in some variable (the value used in the assignment/initialization), there is now two. An
assignment to a pointer variable destroys the pointer copy presently in the variable, as does the
destruction of the variable itself (that is, the scope in which the variable is found, such as the stack frame,
is destroyed).

Rule 1: AddRef must be called for every new copy of an interface pointer, and Release called
every destruction of an interface pointer except where subsequent rules explicitly permit
otherwise.

This is the default case. In short, unless special knowledge permits otherwise, the worst case must be
assumed. The exceptions to Rule 1 all involve knowledge of the relationships of the lifetimes of two or
more copies of an interface pointer. In general, they fall into two categories. 9

9 There are in fact more general cases than illustrated here involving n-way rather than 2-way interactions of matched
AddRef / Release pairs, but that will not be elaborated on here.

Copyright © 1995 Microsoft Corporation Page: 10 DRAFT
All Rights Reserved

The COM Specification Chapter 3. Objects and Interfaces

Pointer Copy 1

Pointer Copy 2

Time

A2 R2

A1 R1

Category 1. Nested lifetimes

Pointer Copy 1

Pointer Copy 2

Time

A2 R2

A1 R1

Category 2. Staggered overlapping lifetimes

In Category 1 situations, the AddRef A2 and the Release R2 can be omitted, while in Category 2, A2 and
R1 can be eliminated.

Rule 2: Special knowledge on the part of a piece of code of the relationships of the beginnings
and the endings of the lifetimes of two or more copies of an interface pointer can allow
AddRef/Release pairs to be omitted.

The following rules call out specific common cases of Rule 2. The first two of these rules are particularly
important, as they are especially common.

Rule 2a: In-parameters to functions. The copy of an interface pointer which is passed as an
actual parameter to a function has a lifetime which is nested in that of the pointer used to
initialize the value. The actual parameter therefore need not be separately reference
counted.

Rule 2b: Out-parameters from functions, including return values. This is a Category 2 situation.
In order to set the out parameter, the function itself by Rule 1 must have a stable copy of the
interface pointer. On exit, the responsibility for releasing the pointer is transferred from the
callee to the caller. The out-parameter thus need not be separately reference counted.

Rule 2c: Local variables. A function implementation clearly has omniscient knowledge of the
lifetimes of each of the pointer variables allocated on the stack frame. It can therefore use
this knowledge to omit redundant AddRef/Release pairs.

Rule 2d: Backpointers. Some data structures are of the nature of containing two components, A
and B, each with a pointer to the other. If the lifetime of one component (A) is known to
contain the lifetime of the other (B), then the pointer from the second component back to
the first (from B to A) need not be reference counted. Often, avoiding the cycle that would
otherwise be created is important in maintaining the appropriate deallocation behavior.
However, such non-reference counted pointers should be used with extreme caution.In
particular, as the remoting infrastructure cannot know about the semantic relationship in use
here, such backpointers cannot be remote references. In almost all cases, an alternative
design of having the backpointer refer a second “friend” object of the first rather than the
object itself (thus avoiding the circularity) is a superiour design. The following figure
illustrates this concept.10

Object 1 Object 2

friend of
Object 1

The following rules call out common non-exceptions to Rule 1.
Rule 1a: In-Out-parameters to functions. The caller must AddRef the actual parameter, since it

will be Released by the callee when the out-value is stored on top of it.

10 The connection point interfaces introduced in the OLE Controls specification are a real world example of this concept.

DRAFT Page: 11 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 3. Objects and Interfaces The COM Specification

Rule 1b: Fetching a global variable. The local copy of the interface pointer fetched from an
existing copy of the pointer in a global variable must be independently reference counted
since called functions might destroy the copy in the global while the local copy is still alive.

Rule 1c: New pointers synthesized out of “thin air.” A function which synthesizes an interface
pointer using special internal knowledge rather than obtaining it from some other source
must do an initial AddRef on the newly synthesized pointer. Important examples of such
routines include instance creation routines, implementations of IUnknown::QueryInterface, etc.

Rule 1d: Returning a copy of an internally stored pointer. Once the pointer has been returned,
the callee has no idea how its lifetime relates to that of the internally stored copy of the
pointer. Thus, the callee must call AddRef on the pointer copy before returning it.

Finally, when implementing or using reference counted objects, a technique sometimes termed “artificial
reference counts” sometimes proves useful. Suppose you’re writing the code in method Foo in some
interface IInterface. If in the implementation of Foo you invoke functions which have even the remotest
chance of decrementing your reference count, then such function may cause you to release before it
returns to Foo. The subsequent code in Foo will crash.
A robust way to protect yourself from this is to insert an AddRef at the beginning of Foo which is paired
with a Release just before Foo returns:

void IInterface::Foo(void) {
this11->AddRef();
/*
 * Body of Foo, as before, except short-circuit returns
 * need to be changed.
 */
this->Release();
return;
}

These “artificial” reference counts guarantee object stability while processing is done.

1.4Error Codes and Error Handling
COM interface member functions and COM Library API functions use a specific convention for error
codes in order to pass back to the caller both a useful return value and along with an indication of status
or error information. For example, it is highly useful for a function to be capable of returning a Boolean
result (true or false) as well as indicate failure or success—returning true and false means that the
function executed successfully, and true or false is the answer whereas an error code indicates the
function failed completely.
But before we get into error handling in COM, we’ll first take a small digression. Many readers might
here be wondering about exceptions. How do exceptions relate to interfaces? In short, it is strictly illegal
to throw an exception across an interface invocation ; all such cross-interface exceptions which are
thrown are in fact bugs in the offending interface implementation. Why have such a policy? The first,
straightforward, pragmatic reason is the technical reality that there simply isn’t an ubiquitous exception
model or semantic that is broadly supported across languages and operating systems that one could
choose to permit; recall that location transparency and language independence are important design goals
of COM. Further, simplicity is also an important design goal. It is well-understood that, quite apart from
COM per se, the exceptions that may be legally thrown from a function implementation in the public
interface of an encapsulated module must necessarily from part of the contract of that function
implementation. Thus, a thrown exception across such a boundary is merely an alternative mechanism by
which values may be returned from the function. In COM, we instead make use of the simpler,
ubiquitous, already-existing return-value mechanism for returning information from a function as our
error reporting mechanism: simply returning HRESULTs, which are the topic of this section.
This all being said, it would be absolutely perfectly reasonable for the implementor of a tool for using or
implementing COM interfaces to within the body of code managed by his tool turn errors returned from

11 “This” is the appropriate thing to AddRef in an object implementation using the approach of multiply inheriting from the suite of
interfaces supported by the object; more complex implementation strategies will need to modify this appropriately.

Copyright © 1995 Microsoft Corporation Page: 12 DRAFT
All Rights Reserved

The COM Specification Chapter 3. Objects and Interfaces

invoked COM interfaces into local exceptions and, conversely, to turn internally generated exceptions
into error-returns across an interface boundary. This is yet another example of the clear architectural
difference that needs to be made between the rules and design of the underlying COM system
architecture and the capabilities and design freedom afforded to tools that support that architecture.

1.4.1HRESULT
The key type involved in COM error reporting is HRESULT.12 In addition, the COM Library provides a
few functions and macros to help applications of any kind deal with error information. An HRESULT is a
simple 32-bit value:

typedef LONG HRESULT;

An HRESULT is divided up into an internal structure that has four fields with the following format
(numbers indicate bit positions):

3 3 2 2 1 1
1 0 9 8 6 5 0
S R F a c i l i t y C o d e

S: (1 bit) Severity field:
0 Success. The function was successful; it behaved according to its proscribed

semantics.
1 Error. The function failed due to an error condition.

R: (2 bits) Reserved for future use; must be set to zero by present programs generating
HRESULTs; present code should not take action that relies on any particular bits being
set or cleared this field.

Facility: (13 bits) Indicates which group of status codes this belongs to. New facilities must be
allocated by a central coordinating body since they need to be universally unique. 13

However, the need for new facility codes is very small. Most cases can and should
use FACILITY_ITF. See the section “Use of FACILITY_ITF” below.

Code: (16 bits) Describes what actually took place, error or otherwise.

COM presently defines the following facility codes:
Facility Name Facility

Value
Description

FACILITY_NULL 0 Used for broadly applicable common status codes that have no specific
grouping. S_OK belongs to this facility, for example.

FACILITY_ITF 4 Used for by far the majority of result codes that are returned from an
interface member function. Use of this facility indicates that the meaning of
the error code is defined solely by the definition of the particular interface
in question; an HRESULT with exactly the same 32-bit value returned from
another interface might have a different meaning

FACILITY_RPC 1 Used for errors that result from an underlying remote procedure call
implementation. In general, this specification does not explicitly document
the RPC errors that can be returned from functions, though they
nevertheless can be returned in situations where the interface being used is
in fact remoted

FACILITY_DISPATCH 2 Used for IDispatch-interface-related status codes.
FACILITY_STORAGE 3 Used for persistent-storage-related status codes. Status codes whose code

(lower 16 bits) value is in the range of DOS error codes (less than 256) have
the same meaning as the corresponding DOS error.

FACILITY_WIN32 7 Used to provide a means of mapping an error code from a function in the
Win32 API into an HRESULT. The semantically significant part of a Win32
error is 16 bits large.

FACILITY_WINDOWS 8 Used for additional error codes from Microsoft-defined interfaces.
12 The name “HRESULT” is retained for historical reasons. Readers familiar with programming COM on the Windows

platform will note that HRESULT is analogous to SCODE.
13 As of this writing, said body is Microsoft Corporation.

DRAFT Page: 13 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 3. Objects and Interfaces The COM Specification

FACILITY_CONTROL 10 Used for OLE Controls-related error values.

A particular HRESULT value by convention uses the following naming structure:
<Facility>_<Sev>_<Reason>

where <Facility> is either the facility name or some other distinguishing identifier, <Sev> is a single
letter, one of the set { S, E } indicating the severity (success or error), and <Reason> is a short identifier
that describes the meaning of the code. Status codes from FACILITY_NULL omit the <Facility>_ prefix. For
example, the status code E_NOMEMORY is the general out-of memory error. All codes have either S_ or E_
in them allowing quick visual determination if the code means success or failure.
The general “success” HRESULT is named S_OK, meaning “everything worked” as per the function
specification. The value of this HRESULT is zero. In addition, as it is useful to have functions that can
succeed but return Boolean results, the code S_FALSE is defined are success codes intended to mean
“function worked and the result is false.”

#define S_OK 0
#define S_FALSE 1

A list of presently-defined standard error codes and their semantics can be found in Appendix A.
From a general interface design perspective, “success” status codes should be used for circumstances
where the consequence of “what happened” in a method invocation is most naturally understood and
dealt with by client code by looking at the out-values returned from the interface function: NULL pointers,
etc. “Error” status codes should in contrast be used in situations where the function has performed in a
manner that would naturally require “out of band” processing in the client code, logic that is written to
deal with situations in which the interface implementation truly did not behave in a manner under which
normal client code can make normal forward progress. The distinction is an imprecise and subtle one,
and indeed many existing interface definitions do not for historical reasons abide by this reasoning.
However, with this approach, it becomes feasible to implement automated COM development tools that
appropriately turn the error codes into exceptions as was mentioned above.
Interface functions in general take the form:

HRESULT ISomeInteface::SomeFunction(ARG1_T arg1, ... , ARGN_T argn, RET_T * pret);

Stylistically, what would otherwise be the return value is passed as an out-value through the last
argument of the function. COM development tools which map error returns into exceptions might also
consider mapping the last argument of such a function containing only one out-parameter into what the
programmer sees as the “return value” of the method invocation.
The COM remoting infrastructure only supports reporting of RPC-induced errors (such as communication
failures) through interface member functions that return HRESULTs. For interface member functions of
other return types (e.g.: void), such errors are silently discarded. To do otherwise would, to say the least,
significantly complicate local / remote transparency.

Use of FACILITY_ITF
The use of FACILITY_ITF deserves some special discussion with respect to interfaces defined in COM and
interfaces that will be defined in the future. Where as status codes with other facilities (FACILITY_NULL,
FACILITY_RPC, etc.) have universal meaning, status codes in FACILITY_ITF have their meaning completely
determined by the interface member function (or API function) from which they are returned; the same
32-bit value in FACILITY_ITF returned from two different interface functions may have completely different
meanings.
The reasoning behind this distinction is as follows. For reasons of efficiency, it is unreasonable to have
the primary error code data type (HRESULT) be larger than 32 bits in size. 32 bits is not large enough,
unfortunately, to enable COM to develop an allocation policy for error codes that will universally avoid
conflict between codes allocated by different non-communicating programmers at different times in
different places (contrast, for instance, with what is done with IIDs and CLSIDs). Therefore, COM
structures the use of the 32 bit SCODE in such a way so as to allow the a central coordinating body 14 to
define some universally defined error codes while at the same time allowing other programmers to define

14 As of this writing, said body is Microsoft Corporation.

Copyright © 1995 Microsoft Corporation Page: 14 DRAFT
All Rights Reserved

The COM Specification Chapter 3. Objects and Interfaces

new error codes without fear of conflict by limiting the places in which those field-defined error codes
can be used. Thus:

1. Status codes in facilities other than FACILITY_ITF can only be defined by the central
coordinating body.

2. Status codes in facility FACILITY_ITF are defined solely by the definer of the interface or API
by which said status code is returned. That is, in order to avoid conflicting error codes, a
human being needs to coordinate the assignment of codes in this facility, and we state that
he who defines the interface gets to do the coordination.

COM itself defines a number of interfaces and APIs, and so COM defines many status codes in
FACILITY_ITF. By design, none of the COM-defined status codes in fact have the same value, even if
returned by different interfaces, though it would have been legal for COM to do otherwise.
Likewise, it is possible (though not required) for designers of COM interface suites to coordinate the
error codes across the interfaces in that suite so as to avoid duplication. The designers of the OLE 2
interface suite, for example, ensured such lack of duplication.
Thus, with regard to which errors can be returned by which interface functions, it is the case that, in the
extreme,

· It is legal that any COM-defined error code may in fact be returned by any COM-defined
interface member function or API function. This includes errors presently defined in
FACILITY_ITF. Further, COM may in the future define new failure codes (but not success
codes) that may also be so ubiquitously returned.
Designers of interface suites may if they wish choose to provide similar rules across the
interfaces in their suites.

· Further, any error in FACILITY_RPC or other facility, even those errors not presently defined,
may be returned.

Clients must treat error codes that are unknown to them as synonymous with E_UNEXPECTED, which in
general should be and is presently a legal error return value from each and every interface member
function in all interfaces; interface designers and implementors are responsible to insure that any newly
defined error codes they should choose to invent or return will be such that that existing clients with code
treating generic cases as synonymous with E_UNEXPECTED this will have reasonable behavior.
In short, if you know the function you invoked, you know as a client how to unambiguously take action
on any error code you receive. The interface implementor is responsible for maintaining your ability to
do same.
Normally, of course, only a small subset of the COM-defined status codes will be usefully returned by a
given interface function or API, but the immediately preceding statements are in fact the actual
interoperability rules for the COM-defined interfaces. This specification endeavors to point out which
error codes are particularly useful for each function, but code must be written to correctly handle the
general rule.
The present document is, however, precise as to which success codes may legally be returned.
Conversely, it is only legal to return a status code from the implementation of an interface member
function which has been sanctioned by the designer of that interface as being legally returnable;
otherwise, there is the possibility of conflict between these returned code values and the codes in-fact
sanctioned by the interface designer. Pay particular attention to this when propagating errors from
internally called functions. Nevertheless, as noted above, callers of interfaces must to guard themselves
from imprecise interface implementations by treating any otherwise unknown returned error code (in
contrast with success code) as synonymous with E_UNEXPECTED: experience shows that programmers are
notoriously lax in dealing with error handling. Further, given the third bullet point above, this coding
practice is required by clients of the COM-defined interfaces and APIs. Pragmatically speaking,
however, this is little burden to programmers: normal practice is to handle a few special error codes
specially, but treat the rest generically.
All the COM-defined FACILITY_ITF codes will, in fact, have a code value which lies in the region 0x0000 —
0x01FF. Thus, while it is indeed legal for the definer of a new function or interface to make use of any
codes in FACILITY_ITF that he chooses in any way he sees fit, it is highly recommended that only code

DRAFT Page: 15 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 3. Objects and Interfaces The COM Specification

values in the range 0x0200 — 0xFFFF be used, as this will reduce the possibility of accidental confusion
with any COM-defined errors. It is also highly recommended that designers of new functions and
interfaces consider defining as legal that most if not all of their functions can return the appropriate status
codes defined by COM in facilities other than FACILITY_ITF. E_UNEXPECTED is a specific error code that
most if not all interface definers will wish to make universally legal.

1.4.2COM Library Error-Related Macros and Functions
The following macros and functions are defined in the COM Library include files to manipulate status
code values.

#define SEVERITY_SUCCESS 0
#define SEVERITY_ERROR 1

#define SUCCEEDED(Status) ((HRESULT)(Status) >= 0)
#define FAILED(Status) ((HRESULT)(Status)<0)

#define HRESULT_CODE(hr) ((hr) & 0xFFFF)
#define HRESULT_FACILITY(hr) (((hr) >> 16) & 0x1fff)
#define HRESULT_SEVERITY(hr) (((hr) >> 31) & 0x1)

#define MAKE_HRESULT(sev,fac,code) \
((HRESULT) (((unsigned long)(sev)<<31) | ((unsigned long)(fac)<<16) | ((unsigned long)(code))))

SUCCEEDED
SUCCEEDED(HRESULT Status)
The SUCCEEDED macro returns TRUE if the severity of the status code is either success or information;
otherwise, FALSE is returned.

FAILED
FAILED(HRESULT Status)
The FAILED macro returns TRUE if the severity of the status code is either a warning or error;
otherwise, FALSE is returned.

HRESULT_CODE
HRESULT_CODE(HRESULT hr)
HRESULT_CODE returns the error code part from a specified status code.

HRESULT_FACILITY
HRESULT_FACILITY(HRESULT hr)
HRESULT_FACILITY extracts the facility from a specified status code.

HRESULT_SEVERITY
HRESULT_SEVERITY(HRESULT hr)
HRESULT_SEVERITY extracts the severity field from the specified status code.

MAKE_HRESULT
MAKE_HRESULT(SEVERITY sev, FACILITY fac, HRESULT hr)
MAKE_HRESULT makes a new status code given a severity, a facility, and a status code.

Copyright © 1995 Microsoft Corporation Page: 16 DRAFT
All Rights Reserved

The COM Specification Chapter 3. Objects and Interfaces

1.5Enumerators and Enumerator Interfaces
A frequent programming task is that of iterating through a sequence of items. The COM interfaces are no
exception: there are places in several interfaces described in this specification where a client of some
object needs to iterate through a sequence of items controlled by the object. COM supports such
enumeration through the use of “enumerator objects.” Enumerators cleanly separate the caller’s desire to
loop over a set of objects from the callee’s knowledge of how to accomplish that function.
Enumerators are just a concept; there is no actual interface called IEnumerator or IEnum or the like. This is
due to the fact that the function signatures in an enumerator interface must include the type of the things
that the enumerator enumerates. As a consequence, separate interfaces exist for each kind of thing that
can be enumerated. However, the difference in the type being enumerated is the only difference between
each of these interfaces; they are all used in fundamentally the same way. In other words, they are
“generic” over the element type. This document describes the semantics of enumerators using a generic
interface IEnum and the C++ parameterized type syntax where ELT_T, which stands for “ELemenT
Type”15 is representative of the type involved in the enumeration:

[
 object,
 uuid(<IID_IEnum <ELT_T>>), // IID_IEnum<ELT_T>
 pointer_default(unique)
]
interface IEnum<ELT_T> : IUnknown
{
 HRESULT Next([in] ULONG celt, [out] IUnknown **rgelt, [out] ULONG *pceltFetched);
 HRESULT Skip([in] ULONG celt);
 HRESULT Reset(void);
 HRESULT Clone([out] IEnum<ELT_T>**ppenum);
}

A typical use of an enumerator is the following.
//Somewhere there’s a type called “String”
typedef char * String;

//Interface defined using template syntax
typedef IEnum<char *> IEnumString;
...
interface IStringManager {

virtual IEnumString* EnumStrings(void) = 0;
};

...
void SomeFunc(IStringManager * pStringMan) {

char * psz;
IEnumString * penum;
penum=pStringMan->EnumStrings();
while (S_OK==penum->Next(1, &psz, NULL))

{
//Do something with the string in psz and free it
}

penum->Release();
return;
}

IEnum::Next
HRESULT IEnum::Next(celt, rgelt, pceltFetched)
Attempt to get the next celt items in the enumeration sequence, and return them through the array pointed
to by rgelt. If fewer than the requested number of elements remain in the sequence, then just return the
remaining ones; the actual number of elements returned is passed through *pceltFetched (unless it is
NULL). If the requested celt elements are in fact returned, then return S_OK; otherwise return S_FALSE.
An error condition other than simply “not that many elements left” will return an SCODE which is a
failure code rather than one of these two success values.

15 “elt” by itself in the function prototypes is just “element”

DRAFT Page: 17 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 3. Objects and Interfaces The COM Specification

To clarify:
· If S_OK is returned, then on exit the all celt elements requested are valid and returned in rgelt.
· If S_FALSE is returned, then on exit only the first *pceltFetched entries of rgelt are valid. The contents of

the remaining entries in the rgelt array are indeterminate.
· If an error value is returned, then on exit no entries in the rgelt array are valid; they are all in an

indeterminate state.
Argument Type Description
celt ULONG The number of elements that are to be returned.
rgelt16 ELT_T* An array of size at least celt in which the next elements are to be

returned.
pceltFetched ULONG* May be NULL if celt is one. If non-NULL, then this is set with the

number of elements actually returned in rgelt.
Return Value Meaning
S_OK Success. The requested number of elements were returned.
S_FALSE Success. Fewer than the requested number of elements were returned.
E_UNEXPECTED An unknown error occurred.

IEnum::Skip
HRESULT IEnum::Skip(celt)
Attempt to skip over the next celt elements in the enumeration sequence. Return S_OK if this was
accomplished, or S_FALSE if the end of the sequence was reached first.
Argument Type Description
celt ULONG The number of elements that are to be skipped.
Return Value Meaning
S_OK Success. The requested number of elements were skipped.
S_FALSE Success. Some skipping was done, but the end of the sequence was hit before

the requested number of elements could be skipped.
E_UNEXPECTED An unknown error occurred.

IEnum::Reset
HRESULT IEnum::Reset(void)
Reset the enumeration sequence back to the beginning.
Note that there is no intrinsic guarantee that exactly the same set of objects will be enumerated the
second time as was enumerated the first. Though clearly very desirable, whether this is the case or not is
dependent on the collection being enumerated; some collections will simply find it too expensive to
maintain this condition. Consider enumerating the files in a directory, for example, while concurrent
users may be making changes.
Return Value Meaning
S_OK Success. The enumeration was reset to its beginning.
E_UNEXPECTED An unknown error occurred.

IEnum::Clone
HRESULT IEnum::Clone(ppenum)
Return another enumerator which contains exactly the same enumeration state as this one. Using this
function, a client can remember a particular point in the enumeration sequence, then return to it at a later
time. Notice that the enumerator returned is of the same actual interface as the one which is being cloned.
Caveats similar to the ones found in IEnum::Reset regarding enumerating the same sequence twice apply
here as well.

16 Think of “rgelt” as short for “range of elt”, signifying an array.

Copyright © 1995 Microsoft Corporation Page: 18 DRAFT
All Rights Reserved

The COM Specification Chapter 3. Objects and Interfaces

Argument Type Description
ppenum IEnum<ELT_T>** The place in which to return the clone enumerator.
Return Value Meaning
S_OK Success. The enumeration was reset to its beginning.
E_UNEXPECTED An unknown error occurred.

1.6Designing and Implementing Objects
Objects can come in all shapes and sizes and applications will implement objects for various purposes
with or without assigning the class a CLSID. COM servers implement objects for the sake of serving them
to clients. In some cases, such as data change notification, a client itself will implement a classless object
to essentially provide callback functions for the server object.
In all cases there is only one requirement for all objects: implement at least the IUnknown interface. An
object is not a COM object unless it implements at least one interface which at minimum is IUnknown. Not
all objects even need a unique identifier, that is, a CLSID. In fact, only those objects that wish to allow
COM to locate and launch their implementations really need a CLSID. All other objects do not.
IUnknown implemented by itself can be useful for objects that simply represent the existence of some
resource and control that resource’s lifetime without providing any other means of manipulating that
resource. By and large, however, most interesting objects will want to provide more services, that is,
additional interfaces through which to manipulate the object. This all depends on the purpose of the
object and the context in which clients (or whatever other agents) use it. The object may wish to provide
some data exchange capabilities by implementing IDataObject, or may wish to indicate the contract
through which it can serialize it’s information by implementing one of the IPersist flavors of interfaces. If
the object is a moniker, it will implement an interface called IMoniker that we’ll see in Chapter 9. Objects
that are used specifically for handling remote procedure calls implement a number of specialized
interfaces themselves as we’ll see in Chapter 7.
The bottom line is that you decide what functionality the object should have and implement the interface
that represents that functionality. In some cases there are no standard interfaces that contain the desired
functionality in which case you will want to design a custom interface. You may need to provide for
remoting that interface as described in Chapter 7.
The following chapters that discuss COM clients and servers use as an example an object class designed
to render ASCII text information from text stored in files. This object class is called “ TextRender” and it
has a CLSID of {12345678-ABCD-1234-5678-9ABCDEF00000}17 defined as the symbol CLSID_TextRender in some
include file. Note again that an object class does not have to have an associated CLSID. This example has
one so we can use it to demonstrate COM clients and servers in Chapters 5 and 6.
The TextRender object can read and write text to and from a file, and so implements the IPersistFile
interface to support those operations. An object can be initialized (see Chapter 5, “Initializing the
Object”) with the contents of a file through IPersistFile::Load. The object class also supports rendering the
text data into straight text as well as graphically as metafiles and bitmaps. Rendering capabilities are
handled through the IDataObject interface, and IDataObject::SetData when given text forms a second
initializing function.18 The operation of TextRender objects is illustrated in Figure 3-4:

Object
IDataObject

IPersistFile

Figure 3-4: An object with IDataObject and IPersistFile Interfaces.
The “Object Reusability” section of Chapter 6 will show how we might implement this object when
another object that provides some the desired functionality is available for reuse. But for now, we want to
see how to implement this object on its own.

17 Do not use this CLSID for your own purposes–it is simply an example. See the section "Identifying and Registering the Object"
below.

18 In other words, the client may initialize the object by telling it to read text from a file or by handing text to it through
IDataObject::SetData. Either way, the object now has some text to render graphically or to save to a file.

DRAFT Page: 19 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 3. Objects and Interfaces The COM Specification

1.6.1Implementing Interfaces: Multiple Inheritance
There are two different strategies for implementing interfaces on an object: multiple inheritance and
interface containment. Which method works best for you depends first of all on your language of choice
(languages that don’t have an inheritance notion cannot support multiple inheritance, obviously) but if
you are implementing an object in C++, which is a common occurrence, your choice depends on the
object design itself.
Multiple inheritance works best for most objects. Declaring an object in this manner might appear as
follows:

class CTextRender : public IDataObject, public IPersistFile {
private:

ULONG m_cRef; //Reference Count
char * m_pszText; //Pointer to allocated text
ULONG m_cchText; //Number of characters in m_pszText

//Other internal member functions here

public:
[Constructor, Destructor]

/*
 * We must override all interface member functions we
 * inherit to create an instantiatable class.
 */

//IUnknown members shared between IDataObject and IPersistFile
HRESULT QueryInterface(REFIID iid, void ** ppv);
ULONG AddRef(void);
ULONG Release(void);

//IDataObject Members overrides
HRESULT GetData(FORAMTETC *pFE, STGMEDIUM *pSTM);
[Other members]
...

//IPersistFile Member overrides
HRESULT Load(char * pszFile, DWORD grfMode);
[Other members]
...

};

This object class inherits from the interfaces it wishes to implement, declares whatever variables are
necessary for maintaining the object state, and overrides all the member functions of all inherited
interfaces, remembering to include the IUnknown members that are present in all other interfaces. The
implementation of the single QueryInterface function of this object would use typecasts to return pointers to
different vtbl pointers:

HRESULT CTextRender::QueryInterface(REFIID iid, void ** ppv) {
*ppv=NULL;

//This code assumes an overloaded == operator for GUIDs exists
if (IID_IUnknown==iid)

*ppv=(void *)(IUnknown *)this;

if (IID_IPersitFile==iid)
*ppv=(void *)(IPersistFile *)this;

if (IID_IDataObject==iid)
*ppv=(void *)(IDataObject *)this;

if (NULL==*ppv)
return E_NOINTERFACE; //iid not supported.

// Any call to anyone’s AddRef is our own, so we can just call that directly
AddRef();
return NOERROR;
}

Copyright © 1995 Microsoft Corporation Page: 20 DRAFT
All Rights Reserved

The COM Specification Chapter 3. Objects and Interfaces

This technique has the advantage that all the implementation of all interfaces is gathered together in the
same object and all functions have quick and direct access to all the other members of this object. In
addition, there only needs to be one implementation of the IUnknown members. However, when we deal
with aggregation in Chapter 6 we will see how an object might need a separate implementation of
IUnknown by itself.

1.6.2Implementing Interfaces: Interface Containment
There are at times reasons why you may not want to use multiple inheritance for an object
implementation. First, you may not be using C++. That aside, you may want to individually track
reference counts on each interface separate from the overall object for debugging or for resource
management purposes—reference counting is from a client perspective an interface-specific operation.
This can uncover problems in a client you might also be developing, exposing situations where the client
is calling AddRef through one interface but matching it with a Release call through a different interface.
The third reason that you would use a different method of implementation is when you have two
interfaces with the same member function names with possibly identical function signatures or when you
want to avoid function overloading. For example, if you wanted to implement IPersistFile, IPersistStorage,
and IPersistStream on an object, you would have to write overloaded functions for the Load and Save
members of each which might get confusing. Worse, if two interface designers should happen to define
interfaces that have like-named methods with like parameter lists but incompatible semantics, such
overloading isn’t even possible: two separate functions need to be implemented, but C++ unifies the two
method definitions. Note that as in general interfaces may be defined by independent parties that do not
communicate with each other, such situations are inevitable.
The other implementation method is to use “interface implementations” which are separate C++ objects
that each inherit from and implement one interface. The real object itself singly inherits from IUnknown
and maintains (or contains) pointers to each interface implementation that it creates on initialization. This
keeps all the interfaces separate and distinct. An example of code that uses the containment policy
follows:

class CImpIPersistFile : public IPersistFile {
private:

ULONG m_cRef; //Interface reference count for debugging

//"Backpointer" to the actual object.
class CTextRender * m_pObj;

public:
[Constructor, Destructor]

//IUnknown members for IPersistFile
HRESULT QueryInterface(REFIID iid, void ** ppv);
ULONG AddRef(void);
ULONG Release(void);

//IPersistFile Member overrides
HRESULT Load(char * pszFile, DWORD grfMode);
[Other members]
...

}

class CImpIDataObject : public IDataObject
private:

ULONG m_cRef; //Interface reference count for debugging

//"Backpointer" to the actual object.
class CTextRender * m_pObj;

public:
[Constructor, Destructor]

//IUnknown members for IDataObject
HRESULT QueryInterface(REFIID iid, void ** ppv);
ULONG AddRef(void);

DRAFT Page: 21 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 3. Objects and Interfaces The COM Specification

ULONG Release(void);

//IPersistFile Member overrides
HRESULT GetData(FORMATETC *pFE,STGMEDIUM *pSTM);
[Other members]
...

}

class CTextRender : public IUnknown
{
friend class CImpIDataObject;
friend class CImpIPersistFile;

private:
ULONG m_cRef; //Reference Count
char * m_pszText; //Pointer to allocated text
ULONG m_cchText; //Number of characters in m_pszText

//Contained interface implementations
CImpIPersistFile * m_pImpIPersistFile;
CImpIDataObject * m_pImpIDataObject;

//Other internal member functions here

public:
[Constructor, Destructor]

HRESULT QueryInterface(REFIID iid, void ** ppv);
ULONG AddRef(void);
ULONG Release(void);

};

In this technique, each interface implementation must maintain a backpointer to the real object in order to
access that object’s variables (normally this is passed in the interface implementation constructor). This
may require a friend relationship (in C++) between the object classes; alternatively, these friend classes
can be implemented as nested classes in CTextRender.
Notice that the IUnknown member functions of each interface implementation do not need to do anything
more than delegate directly to the IUnknown functions implemented on the CTextRender object. The
implementation of QueryInterface on the main object would appear as follows:

HRESULT CTextRender::QueryInterface(REFIID iid, void ** ppv)
{
*ppv=NULL;

//This code assumes an overloaded == operator for GUIDs exists
if (IID_IUnknown==iid)

*ppv=(void *)(IUnknown *)this;

if (IID_IPersitFile==iid)
*ppv=(void *)(IPersistFile *)m_pImpIPersistFile;

if (IID_IDataObject==iid)
*ppv=(void *)(IDataObject *)m_pImpIDataObject;

if (NULL==*ppv)
return E_NOINTERFACE; //iid not supported.

//Call AddRef through the returned interface
((IUnknown *)ppv)->AddRef();
return NOERROR;
}

This sort of delegation structure makes it very easy to redirect each interface’s IUnknown members to some
other IUnknown, which is necessary in supporting aggregation as explained in Chapter 6. But overall the
implementation is not much different than multiple inheritance and both methods work equally well.
Containment of interface implementation is more easily translatable into C where classes simply become
equivalent structures, if for any reason such readability is desirable (such as making the source code more

Copyright © 1995 Microsoft Corporation Page: 22 DRAFT
All Rights Reserved

The COM Specification Chapter 3. Objects and Interfaces

comprehensible to C programmers who do not know C++ and do not understand multiple inheritance). In
the end it really all depends upon your preferences and has no significant impact on performance nor
development.

DRAFT Page: 23 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

This page intentionally left blank.

	1 Objects And Interfaces
	1.1 Interfaces
	1.1.1 The Interface Binary Standard
	1.1.2 Interface Definition and Identity
	1.1.3 Defining Interfaces: IDL
	1.1.4 C vs. C++ vs. ...
	1.1.5 Remoting Magic Through Vtbls

	1.2 Globally Unique Identifiers
	1.3 The IUnknown Interface
	1.3.1 IUnknown Interface
	IUnknown::QueryInterface
	IUnknown::AddRef
	IUnknown::Release

	1.3.2 Reference Counting

	1.4 Error Codes and Error Handling
	1.4.1 HRESULT
	Use of FACILITY_ITF

	1.4.2 COM Library Error-Related Macros and Functions
	SUCCEEDED
	FAILED
	HRESULT_CODE
	HRESULT_FACILITY
	HRESULT_SEVERITY
	MAKE_HRESULT

	1.5 Enumerators and Enumerator Interfaces
	IEnum::Next
	IEnum::Skip
	IEnum::Reset
	IEnum::Clone

	1.6 Designing and Implementing Objects
	1.6.1 Implementing Interfaces: Multiple Inheritance
	1.6.2 Implementing Interfaces: Interface Containment

